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The passive localization of pulsed sound sources from differential arrival times of direct and 
surface-reflected arrivals at a pair of hydrophones is examined. Assuming a homogeneous 
ocean the errors in distance estimation are largest for source locations right below and at the 
side of  the array and also close to the sea surface. The localization accuracy can be raised 
by increasing the hydrophone separation and the  array depth and/or reducing the array 
angle with respect to the horizontal. In the case of stratified ocean environments a ray-
theoretic localization approach is introduced taking acoustic refraction into account.  

1. INTRODUCTION 

The passive localization of vocalizing cetaceans is essential for behavioral studies as well 
as for the quantitative description of a number of characteristics of the produced sounds, such 
as source level and directionality. While there is a broad literature on sounds produced by 
various cetacean species, it is only recently that reliable range and source-level estimates of 
free-ranging cetaceans, sperm whales in particular, with passive means have been reported 
[1], [2], based on measurements of differential travel-times of  click sounds at a large-
aperture hydrophone array deployed from a number of independent platforms.  

The use of a simple 2-element hydrophone array is examined here for localization and 
range estimation. The common use of such arrays is for bearing estimation using differential 
travel times of direct arrivals [3]. By exploiting both direct and surface-reflected arrivals an 
estimate for the animal location can be obtained. In the case of an homogeneous ocean simple 
closed-form expressions are derived for the location estimates. In the more general case 
where stratification is present a ray-theoretic localization approach is developed based on the 
assumption that the hydrophone spacing is much smaller than the source distance.    



  

2. LOCALIZATION IN A HOMOGENEOUS MEDIUM  

Let us consider an array of 2 hydrophones, 1 and 2, with separation L in a homogeneous 
medium with sound velocity c (Fig. 1). Let h be the depth of hydrophone 1 and a the array 
angle with respect to the horizontal. A Cartesian coordinate system (x,y,z) is adopted with 
origin at the location of hydrophone 1 and with the xz plane coinciding with the vertical plane 
containing the two hydrophones.  

A pulsed signal originating at the source 
location (xS,yS,zS). will reach the hydrophones 
1 and 2 in times T1 and T2, respectively, 
following the direct propagation paths. The 
travel-times corresponding to the surface-
reflected paths from the source to the hydro-
phones can be calculated as the direct-path 
travel times from the source to the mirror 
images 3 and 4 of the hydrophones 1 and 2 
about the sea surface. In this connection the 
travel times of the surface-reflected arrivals 
at the hydrophones 1 and 2 are denoted by T3 
and T4, respectively. The location vectors of 
the four hydrophones can be written in the 
form ( ),0,i i ir x z=

G ,  1, ,4i = …  

( )1 0,0,0r =
G ,  

( )2 cos ,0, sinr L a L a= −
G ,         (1) 

( )3 0,0,2r h=
G ,  and 

( )4 cos ,0,2 sinr L a h L a= +
G . 

 
 
Fig. 1: A two-element hydrophone array 
(1,2) and its mirror image (3,4) about the 
sea surface. All hydrophones lie on the xz  
plane. 

By referring all travel times to 1T T= , the arrival time at hydrophone 1,  and defining the 
differential arrival times i it T T= − , the following equations can be written  

( ) ( ) ( )2 2 22 2
i S i S S ic T t x x y z z+ = − + + −   ,  1, ,4i = …      (2) 

By subtracting the equation for 1i =  from the remaining equations the following system of 
linear equations is obtained 

2 2 22
2 22 2 2

22 2 2
3 3 3 3 3

2 2 2 2
4 4 4 4 4

S

S

r c tx z c t x
x z c t z r c t

Tx z c t r c t

 −        = −          −   

G

G

G

      

      

      

       (3) 

By solving this system the unknowns Sx , Sz  and T can be evaluated. The y -coordinate of 

the source location can be estimated from the relation 2 2 2 2
S S Sy c T x z= ± − − ; with a 2-
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hydrophone array configuration there are two symmetric solutions for Sy  (left-right 
ambiguity), provided that 2 2 2 2

S Sc T x z> + .  
The distance D  of the source from hydrophone 1, is related with the reference travel time 

T by the relation D Tc= , and it is given by the following expression 
2 2 2
2 3 4

2 3 4

( sin )
2 ( sin )
c ht h L a t htD

ht h L a t ht
+ + −

= −
+ + −

       (4) 

Thus, the estimate for the distance D  depends on the differential travel times ( 2t , 3t , 4t ), the 
array geometry ( h , L , a )  and the sound velocity c .  

Errors in the measurement of the array depth and inclination as well as of the differential 
travel times will reflect in errors in the estimation of the source distance D . The first-order 
effect of this errors is given by  

4

2
i

i i

R R RD h a t
h a t

δ δ δ δ
=

∂ ∂ ∂
= + +

∂ ∂ ∂∑        (5) 

Assuming that the measurement errors are uncorrelated the variance of the error Dδ  is 
expressed as 
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Thus the rms error 2
RMSD Dδ δ=  for the estimated source distance can be calculated in 

terms of the underlying rms errors in array-geometry and travel-time measurement.  

3. LOCALIZATION IN A HORIZONTALLY STRATIFIED MEDIUM  

In a stratified ocean the acoustic propagation paths are curvilinear due to refraction and 
the previous analysis assuming straight-line propagation cannot be applied. In the framework 
of ray theory the geometry of the paths (rays) is governed by Snell’s law [4]  

cos .const
c

ϕ
=           (7) 

where ( )c c z=  is the sound-speed profile and ϕ  is the grazing angle of propagation. In the 
case of a linear sound-speed profile /dc dz b=  the ray becomes a circular arc with radius of 
curvature  

0

0cos
cR

b ϕ
= ,           (8) 

where 0ϕ  is the launch angle of the ray and 0c   the sound speed corresponding to the launch 
depth 0z . According to Snell’s law the propagation angle becomes zero at the depth ẑ  
(turning depth) where the following condition holds  

0

0

1 cos
ˆ( )c z c

ϕ
=           (9) 



  

At the turning points the ray changes direction of propagation in the vertical such that it heads 
towards areas of lower sound-speed values (less than ˆ( )c z ). Using the above relations the ray 
geometry can be calculated.  

The travel time along a ray, from depth 0z  to 1z  is expressed through the integral  

1

0
sin ( ) ( )

z

z

dzT
z c zϕ

∆ = ∫          (10) 

In the case of linear sound speed profile this integral can be evaluated explicitly and the travel 
time is given by the expression  
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This expression holds if there is no turning point within the interval of integration. Otherwise 
the integration has to be split into two parts, one from the beginning to the turning point and 
one from the turning point to the end.  

Apart from travel-time calculation, a further point of interest for the localization problem 
is the calculation of the intersection point(s) between two circular rays. In general there can 
be two, one or no intersection points between two circles. The intersection location(s) can be 
easily found by solving a quadratic equation resulting from the equations of the two circles.  

The expressions (8) and (11) hold for a linear sound-speed profile. In case of a piecewise 
linear profile these expressions can be applied for each layer of constant sound-speed 
gradient. Ray tracing can be carried out by applying continuity of propagation angles at the 
layer interfaces (provided that the sound speed is continuous) and reflection conditions at the 
sea surface.  

Assuming that the separation of two hydrophones, A and B (Fig. 2a), is small compared 
with the source distance ( L D� ) the angle of arrival ψ  at the two hydrophones is related 
with the differential arrival time A BT T−  through the relation  

( ) cosA Bc T T L ψ− =  ,          (12) 

where c  is the sound speed at the location of the array. Using this relation the angle ψ  of the 
direct arrivals at the hydrophones 1 and 2 can be calculated from the differential arrival time 

2 1T T− .  Similarly, the angle 'ψ  of the surface-reflected arrivals can be calculated by taking 
the differential arrival time 4 3T T− . The angles ψ  and 'ψ  define two conical surfaces with 
axis of symmetry coinciding with the axis of the array.  

If the case of a vertical array the problem becomes axisymmetric about the z-axis, in the 
sense that the grazing angles of the direct and surface-reflected arrivals are independent of the 
azimuthal direction. Otherwise, the two grazing angles depend on the azimuthal direction and 
they can be calculated from the intersection of the above two conical surfaces with the 
vertical plane corresponding to each azimuthal direction and containing the cone apex. The 
intersections of this plane with each conical surface are straight lines. In general there can be 
two, one or no intersections defining corresponding grazing angles. These can be obtained by 
solving a quadratic equation resulting from the equations of the conical surface.  

Using the estimated angles of direct and surface-reflected arrivals for each azimuthal 
direction as initial conditions the geometry of the corresponding rays is calculated and 
intersections between direct and surface-reflected paths are found (Fig. 2b). For each 
intersection point (candidate source location) the travel time to the receiving array along the 



  

direct ( DT ) and surface-reflected ( SRT ) ray path is calculated and the time difference 
( SR DT T− ) is compared to the differential arrival time ( 3 1T T− ). The azimuthal directions and 
intersection points with SR DT T− = 3 1T T−  are solutions of the localization problem.  
 
 
 
 
 
 
 
 
 
 
 
Fig. 2: a)Estimation of arrival angle assuming a distant source. b) Source localization in a 
stratified ocean environment.  

4. NUMERICAL RESULTS 

Some numerical results for passive source localization are given in this section. Starting 
with a homogeneous medium (c=1500 m/sec), Fig. 3 shows the rms error of the estimated 
distance D as a function of the source location for 4 array configurations assuming 
measurement errors (rms) of 0.01 msec for travel times and 0.1 m for depth. Assuming that 
the inclination of the array is estimated from the depths of the two hydrophones, the error in 
angle estimation is correlated with the measurement error for the depth of each hydrophone 
( cos 2rms rmsL a a hδ δ⋅ = ). Fig. 3 presents the effect of the array depth (h), hydrophone 
separation (L), and array inclination angle (a). The errors of the estimated distance are quite 
significant in all cases and comparable with the true source distance [2]. The localization 
errors are largest right below and at the side of the array and also close to the sea surface. For 
fixed rms errors of depth and travel-time measurement the error in the estimated source 
distance can be reduced by increasing the array depth and the hydrophone separation and/or 
by decreasing the array inclination with respect to the horizontal. In this connection, a 
horizontal array offers the largest distance accuracy possible and a vertical array the smallest.  

Fig. 4 presents an example of source localization in a stratified medium characterized by 
a bilinear sound-speed profile (Fig. 4a). The travel-time data were generated assuming a 
source at a range of 5 km from hydrophone 1 and at a depth of 1 km on the same vertical 
plane defined by the hydrophone array. The depth of hydrophone 1 was taken 50 m and the 
array inclination angle 30o from the horizontal. The separation between the two hydrophones 
was taken 30 m. The ray localization based on the actual sound speed profile reproduces 
accurately the azimuth direction, range and depth of the source (Fig. 4b). The source 
localization based on an average sound speed (homogeneous medium) results in an estimated 
source distance of  852.8 m, much smaller than the actual distance of  5099 m. 

A localization scheme based on the homogeneous-medium assumption is anticipated to 
perform well for small ranges where the straight-line propagation is a good approximation. 
However, for larger ranges the refraction (ray bending) and the non-uniformity of the sound-
speed distribution along the ray paths have significant effects on arrival times and must be 
accounted for.   
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Fig. 3: The rms error in distance estimation in a homogeneous medium as a function of the 
source location for 4 array configurations. The 5 contours correspond to the levels 200m 
(inner), 400m, 600m, 800m and 1000m (outer).  

 
Fig. 4: Source localization in a stratified medium using ray tracing. a)Sound-speed profile.  
b) Intersection of direct and surface-reflected ray paths at the estimated source location (•);  
the true source location is marked by +.   
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